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Wehaveperformedultrafast pump–probeexperiments onaGaAs–AlAsmicrocavitywith a resonancenear 1300nm
in the “Original” telecom band. We concentrate on ultimate-fast optical switching of the cavity resonance that is
measured as a function of pump-pulse energy. We observe that, at low pump-pulse energies, the switching of the
cavity resonance is governed by the instantaneous electronic Kerr effect and is achieved within 300 fs. At high
pump-pulse energies, the index change induced by free carriers generated in the GaAs start to compete with
the electronic Kerr effect and reduce the resonance frequency shift. We have developed an analytic model that pre-
dicts this competition in agreement with the experimental data. To this end, we derive the nondegenerate two- and
three-photon absorption coefficients forGaAs.Ourmodel includes a new term in the intensity-dependent refractive
index that considers the effect of theprobe-pulse intensity,which is resonantly enhancedby the cavity.Wecalculate
the effect of the resonantly enhancedprobe light on the refractive index change inducedby the electronicKerr effect
for cavities with different quality factors. By exploiting the linear regime where only the electronic Kerr effect is
observed, we manage to retrieve the nondegenerate third-order nonlinear susceptibility χ�3� for GaAs from the
cavity resonance shift as a function of pump-pulse energy. © 2012 Optical Society of America

OCIS codes: 130.4815, 190.7110, 190.3270, 200.6715.

1. INTRODUCTION
Semiconductor cavities have attracted considerable attention
in recent years due to their ability to store light for a given
amount of time in a small volume [1]. This key issue of cavities
stimulated a large amount of experiments for increasing
the nonlinear interaction of photons and to understand and
exploit cavity quantum electrodynamics effects [2–6]. The dy-
namic manipulation of these systems, especially of combined
cavity emitter systems is thereby of major interest [7–9]. All-
optical switching of cavities gains momentum since it enables
the dynamic control of the capture and release of photons on
subpicosecond time scales [10]. Moreover, ultrafast change of
the optical properties of a cavity prevails to frequency conver-
sion through adiabatic [11] and not-adiabatic processes [12].

The optical properties of cavities can be altered by chan-
ging the refractive index of the constituent material. The re-
fractive index of a semiconductor cavity can be switched via
the excitation of free carriers in the semiconductor [13–18].
However, the switching speed in such schemes is material
dependent and limited by the recombination dynamics of
the excited carriers. On the other hand, the refractive index
of a semiconductor cavity can also be changed with the elec-
tronic Kerr effect. The electronic Kerr effect is, in terms of
speed, the ultimate way for ultrafast switching due to its

material-independent and instantaneous response nature [10].
Yet, the excitation of relatively slow free carriers has to be
avoided to accomplish a positive refractive index change with
the electronic Kerr effect, since free carriers lead to an oppo-
site change of refractive index [19–21]. The main challenge is
therefore to find a range of parameters where solely the Kerr
effect controls the optical properties of the cavity.

In this work we employ the instantaneous electronic Kerr
effect to switch the resonance frequency of a semiconductor
planar microcavity in the Original telecom band within 300 fs
as a function of pump-pulse energy. Using two light sources
that provide pump and probe pulses we observe and analyze
the competition of free-carrier-induced index changes and the
electronic Kerr effect in a switched cavity. We have developed
an analytical model that predicts this competition in agree-
ment with our experimental data. Our model is developed
for nondegenerate light sources and thereby can explain the
effect of the cavity enhancement and the intensity of each
source in the switching of a cavity resonance.

2. SAMPLE AND EXPERIMENTAL SETUP
Our experiments are performed on a planar microcavity
grown by means of molecular-beam epitaxy. The cavity
resonance is designed to occur at λ0 � 1280� 5 nm in the
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”Original” telecom band. Figure 1(a) shows a scanning elec-
tron micrograph of the sample. The sample consists of a GaAs
λ layer (d � 376 nm) sandwiched between two Bragg stacks
made of 7 and 19 pairs of λ ∕ 4-thick layers of nominally pure
GaAs (dGaAs � 94 nm) and AlAs (dAlAs � 110 nm), respec-
tively, and positioned on a GaAs wafer. The storage time of
the probe photons in the cavity is deliberately reduced by de-
creasing the reflectivity of the top mirror of the cavity. This
leads to faster switching rates while at the same time reducing
free-carrier excitation due to a reduced field enhancement
in the cavity.

Figure 1(b) shows the measured and the calculated reflec-
tivity spectrum of the microcavity. The reflectivity spectrum
of the cavity is measured with a setup consisting of a super-
continuum broadband white-light source and a Fourier trans-
form interferometer with a resolution of 0.5 cm−1 (BioRad
FTS6000). It can be seen that the stop band of the Bragg stack
extends from 7072 to 8498 cm−1 (1414 to 1177 nm). On both
sides of the stop band, Fabry–Perot fringes are visible due to
interference of the light reflected from the front and the
back surfaces of the sample. Inside the stop band, a narrow
trough indicates the cavity resonance at ωres � 7794.2 cm−1

(λres � 1283.01 nm). The resonance frequency of the switched
cavity is determined by fitting a Lorentz function to the reso-
nance trough over a limited frequency range. The relatively
high reflectivity of the resonance minimum (Rtrough � 80%)
is a result of the asymmetric cavity design. From the linewidth
(Δω � 20� 3 cm−1, full width at half-maximum) of the cavity

resonance, we derive a quality factor Q � 390� 60 corre-
sponding to a cavity storage time of τcav � 0.3� 0.045 ps.

A versatile setup described in [22] is used to Kerr switch our
microcavity. The setup is shown in Fig. 2(a) and consists of
two independently tunable optical parametric amplifiers
(OPAs) (Light Conversion Topas pumped by a 1 kHz oscilla-
tor) that are the sources of the pump and probe beams. The
pulse duration of both OPAs is τP � 140� 10 fs. The time de-
layΔt between the pump and the probe pulse is set by a delay
stage with a resolution of 15 fs. The reflected signal from the
cavity is detected with a nitrogen-cooled InGaAs line array de-
tector spectrometer. The measured transient reflectivity con-
tains information on the cavity resonance during the cavity
storage time, and it should thus not be confused with the in-
stantaneous reflectivity at the delay Δt. The measured transi-
ent reflectivity is a result of the probe light that impinges at
delay Δt, which circulates in the cavity during the storage
time, and then detected, which is integrated due to the rela-
tively slow response time of the detector [22].

The cavity is switched with the electronic Kerr effect by ju-
dicious tuning of the pump and the probe frequencies relative
to the semiconductor bandgap [21,23]. The probe frequency
(ωpr � 7812 cm−1) is set by the cavity resonance in the telecom
range, while the pump frequency is centered at ωpu �
4165 cm−1 (λpu � 2400 nm) to suppress nondegenerate two-
photon absorption (Epr � Epu ≤ Egap); see 2 in Fig. 2(b).
Furthermore, the energy of the pump photons is chosen
to lie below half of the semiconductor bandgap energy

(a)

(b)

Fig. 1. (Color online) (a) Scanning electron micrograph of our mi-
crocavity. The GaAs λ layer is indicated with white arrows and is sand-
wiched between two GaAs–AlAs Bragg stacks. The GaAs substrate is
visible at the bottom. The GaAs layers appear dark gray, while the
AlAs layers appear light gray. (b) Measured (black symbols) and cal-
culated (red line) reflectivity spectra of the microcavity. The stop
band of the Bragg stacks extends from 7072 to 8498 cm−1. Fabry–
Perot fringes are visible on both sides of stop band. Within the stop
band, a narrow trough at 7794.2 cm−1 (1282 nm) indicates the cavity
resonance. From the linewidth (Δω � 20� 3 cm−1, full width at half-
maximum) of the cavity resonance, we derive a quality factor
Q � 390� 60 corresponding to a cavity storage time of τcav �
0.3� 0.045 ps. The calculations are performed with a transfer matrix
model.
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Fig. 2. (Color online) (a) Schematic of the setup. The probe beam
path is shown in blue; the pump beam path in red. The time delay
between the pump and the probe pulses is adjusted through a delay
stage. The reflected signal from the cavity is spectrally resolved and
detected with a spectrometer. The frequency of the probe beam is re-
sonant with the cavity, and the bandwidth of the probe beam is broad-
er than the cavity linewidth. (b) Schematic energy diagrams for the
two-photon carrier excitation processes possible in our experiment
[see Eq. (4)]. Two-photon absorption is largely suppressed by the
judicious tuning of the pump and the probe frequencies relative to
the semiconductor bandgap energy. (c) Schematic energy diagrams
for all possible three-photon processes in the experiment that may
result in free-carrier generation [see Eq. (5)].
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(Epu < 1
2Egap) [see 1 in Fig. 2(b)] to avoid two-pump

photon absorption. The excitation of free carriers is also sup-
pressed by choosing a low probe-pulse energy (Ipr � 0.18�
0.02 pJ ∕ μm2), while the average pump-pulse energy is varied
between Ipu � 13 and 275� 20 pJ ∕ μm2. The pulse energies
are determined from the average laser power at the sample
position and converted to peak power assuming a Gaussian
pulse shape. The pulse energies are given per square micro-
meter since the switching of a cavity resonance has interesting
prospects for miniature cavities with footprints in the micro-
meter range [24,25]. The pump beam has a larger Gaussian
focus (ϕpu � 70 μm) than the probe beam (ϕpr � 30 μm) to
ensure that only the central flat part of the pump focus is
probed and that the probed region is spatially homogeneously
pumped. The judicious selection of the pump–probe powers
and frequencies enabled the instantaneous Kerr switching at
elevated frequencies including the telecom band.

3. PUMP-PULSE ENERGY-DEPENDENT
ULTIMATE-FAST SWITCHING
Figure 3 shows the transient reflectivity spectra for three dif-
ferent pump–probe time delays Δt. At Δt � −2 ps the probe
pulse arrives earlier than the pump pulse. Hence, the mea-
sured spectra shows the unswitched transient reflectivity of
the cavity with a resonance at ωres � 7805.6 cm−1. At tempor-
al overlap of pump and probe pulses (Δt � 0 ps), the cavity
resonance frequency has redshifted to 7800.7 cm−1, indicating
an increase of the refractive index. At positive delays
(Δt � �5 ps), where the pump pulse arrives earlier than the
probe pulse, the cavity resonance is measured at 7805.2 cm−1.
Thus, the resonance frequency at positive delays has returned
to the same frequency as the unswitched resonance frequency
at negative delays. The simultaneous observation of a redshift
of the cavity resonance only at pump–probe overlap and of the
identical cavity resonances at positive and negative delays
confirms that the cavity resonance is mainly switched by
the electronic Kerr effect and not by the free carriers.

Figure 4 shows the resonance frequency versus time delay
at three different pump-pulse energies. Figure 4 is obtained
from spectra similar to those shown in Fig. 3. When the sam-
ple is pumped at 42� 5 pJ ∕ μm2, the resonance frequency red-
shifts by 1 cm−1 atΔt � 0. We observe the dynamic redshift of
the cavity resonance only at pump–probe coincidence within

300 fs, confirming the instantaneous switching of the cavity
resonance frequency [10]. The redshift of the resonance fre-
quency induced by the electronic Kerr effect increases to
4 cm−1 when the cavity is pumped at 84� 10 pJ ∕ μm2. At these
power levels, the cavity resonance frequency at positive time
delays returns to the same value as the unswitched cavity re-
sonance. Further increasing the pump-pulse energy to 238�
20 pJ ∕ μm2 results in an instantaneous shift of only 4.3 cm−1,
although the sample is pumped with a three times higher pulse
energy. At high pump energies we also observe that the reso-
nance frequency is blueshifted at positive time delays. At po-
sitive delays the refractive index decreases as a result of free
carriers that remain excited for a much longer time (about
50 ps) as has been observed before [14,26,27]. The carriers
are excited by two- and three-photon processes as depicted
in Figs. 2(b) and 2(c). Moreover, at high pump energies, the
cavity resonance frequency atΔt < 0 ps is already blueshifted
compared to the cold cavity resonance at low pump-pulse en-
ergies, likely since the light is stored in the cavity up to
Δt � −2 ps, which results in free-carrier excitation by nonde-
generate two- and three-photon absorption. We conclude from
Fig. 4 that the reversible and ultrafast cavity switching as a
result of the electronic Kerr effect occurs mainly at low
pump-pulse energies (13–50� 5 pJ ∕ μm2). In this regime,
the switching speed is only limited by the cavity storage time
and not by material relaxation properties. The switching of the
cavity can be achieved within 300 fs, which is only limited by
the storage time of light in the cavity and not by extrinsic
material properties.

Figure 5 shows the transient reflectivity spectra for three
different pump-pulse energies at temporal (Δt � 0 ps) and
spatial overlap of the pump and the probe beams. The cavity
resonance frequency (ωres � 7805.4 cm−1) shifts to a lower
frequency (7804.2 cm−1) if the sample is pumped at a low
pump-pulse energy 13� 1 pJ ∕ μm2. When the pump-pulse
energy is increased to 65� 7 pJ ∕ μm2, we observe that the in-
stantaneously switched resonance frequency further redshifts
to 7800.9 cm−1. However, when the pump-pulse energy is in-
creased to 275� 20 pJ ∕ μm2, the resonance frequency shifts to
only 7801.3 cm−1, showing less shift than the previous step.
We conclude that, at high pump-pulse energies, a competition

Fig. 3. (Color online) Transient reflectivity spectra for three differ-
ent pump–probe delays. The spectra are obtained at 84 pJ ∕ μm2 pump-
pulse energy. The gray curves show the fit to the cavity resonance
from which the cavity resonance frequency (ωres) is determined as
the minimum.
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Fig. 4. (Color online) Resonance frequency versus time delay (Δt)
between pump and probe at different pump-pulse energies. The reso-
nance frequency redshifts due to the instantaneous electronic Kerr
effect only at temporal overlap (Δt � 0� 15 fs) of pump–probe
(shaded with light color). The blueshift of the cavity resonance due
to free-carriers is observed when the pump-pulse energy is increased
(shaded with dark color). The dotted horizontal line shows the un-
switched resonance frequency at ω0 � 7805.6 cm−1.
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takes place between the electronic Kerr effect that increases
the refractive index and redshifts the cavity resonance with
the excited free carriers that decrease the refractive index
and blueshift the cavity resonance.

Figure 6 shows the shift of the instantaneously switched
resonance frequency versus pump-pulse energy. We observe
that, at low pump-pulse energies, the resonance frequency
shift increases linearly with pump-pulse energy due to the po-
sitive refractive index change of the electronic Kerr effect
[28]. The linear increase of both the cavity resonance and
the refractive index is physically reasonable since the non-
linear index change with the Kerr effect is a product of the
nonlinear susceptibility with the pump field squared (see
Section 4 and [28]). Beyond 50� 5 pJ ∕ μm2, we observe a sa-
turation and even a turnover of the resonance frequency shift
versus pump-pulse energy. At high pump-pulse energies, free
carriers are excited that reduce the refractive index, opposite
to the Kerr effect. Since the carriers with our settings of light
frequencies can only be excited by two- and three-photon pro-
cesses, the dependence of the refractive index (and hence re-
sonance frequency) becomes nonlinear versus pump-pulse
energy as is apparent from Fig. 6. We see in Fig. 6 that there

is an apparent saturation in our experimental results. Our
model does not show this saturation but a maximum. Since
the pulse energies are limited in our experiments, we cannot
observe a possible decrease of the refractive index at high
pulse energies. Moreover, in our model we do not consider
the plasma screening effect and the Stark effect. From the lin-
ear slope at low pump energies where free carriers are neg-
ligible, we derive a nondegenerate third-order nonlinear
susceptibility χ�3� � 0.48 × 10−11 esu for GaAs at the strongly
nondegenerate conditions ωpr � 7812 cm−1 and ωpu �
4165 cm−1 (dashed line in Fig. 6). The value that we find for
χ�3� agrees within an order of magnitude with degenerate va-
lues reported atω � 9434 cm−1 [28]. The qualitative agreement
between these different measurements is gratifying in view of
the differences in the frequencies of the light sources [29].

4. MODELING
In order to interpret the competition between the electronic
Kerr effect and free-carrier effects at elevated pump-pulse en-
ergies, we have developed a model of the optical properties of
the semiconductor cavity. Here we notably develop a model to
include the nondegenerate three-photon absorption. Since
only the two-photon absorption coefficient has been reported
previously for the nondegenerate case [30], we chose to devel-
op a model for the nondegenerate case that can predict both
two- and three-photon absorption cross sections. In our ex-
periment, as a result of the cavity field enhancement, the ef-
fect of the probe intensity becomes comparable to the pump
intensity. For this reason, we chose to develop a new model
instead of using the existing degenerate three-photon absorp-
tion models [31] to calculate the free-carrier density as a func-
tion of both pump and probe intensities independently. Our
model describes the refractive index change of a cavity result-
ing from both the electronic Kerr effect and the free carriers in
a nondegenerate pump–probe experiment. In order to model
the refractive index change induced by the electronic Kerr
effect, we use the χ�3� value determined from our experiments
to limit the number of free parameters. For free carriers the
relevant χ�3� has been theoretically described using the inde-
pendent particle approximation [32,33]. The index change in-
duced by free carriers that are excited by two- [Fig. 2(b)] and
three- [Fig. 2(c)] photon absorption is calculated using the
well-known Drude model [34,35]. We can safely neglect the
contribution of free carriers generated by one-photon absorp-
tion since both the pump and the probe photons are much less
energetic than the bandgap energy of GaAs. We combine both
the electronic Kerr effect and the index change resulting from
excited free carriers in Eq. (1), which gives the refractive in-
dex change Δn for a semiconductor optically switched in a
general nondegenerate pump–probe experiment:

Δn � 6πχ�3�

n0
�jEcavj2 � 2jEpuj2�|��������������������{z��������������������}

Kerr

−
q2

2n0ϵ0m�
optω

2
pr
�N �2�

eh � N �3�
eh �|����������������������{z����������������������}

free carriers

.

(1)

Here χ�3� is the third-order nonlinear susceptibility, ϵ0 the
vacuum permittivity, Ecav and Epu the electric field of the
probe in the cavity and of the pump pulses, respectively, q
the electron charge, ωpr and ωpu the frequencies of the probe

Fig. 5. (Color online) Transient reflectivity versus wavenumber for
three different pump-pulse energies. The spectra are obtained at
pump–probe coincidence (Δt � 0� 15 fs). The gray curves show
the fit to the cavity resonance from which the cavity resonance fre-
quency (ωres) is determined as the minimum, indicated as ticks.

Kerr
regime

Kerr + free-carrier
regime

Fig. 6. (Color online) Instantaneous negative shift of the resonance
frequency versus pump-pulse energy. Black circles show the mea-
sured results with a 10% error bar. At low pump-pulse energies (light
shaded region), we only observe electronic Kerr effect since the re-
sonance frequency decreases linearly with the pump-pulse energy
(magenta dashed line). The competing blueshift of free carriers is
observed beyond 70 pJ ∕ μm2, and the region with both Kerr and free-
carrier excitation is darker shaded. The right ordinate shows the cal-
culated refractive index change. The red solid curve indicates the
modeled index change as a function of the pump-pulse energy for
general nondegenerate pump–probe light beams.
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and the pump beams, respectively, m�
opt the optical effective

mass of the free carriers, and N �2�
eh and N �3�

eh the free-carrier
densities generated by two-photon and three-photon absorp-
tion, respectively. Equation (1) shows that the refractive index
increases with the electronic Kerr effect and decreases with
the increasing density of free carriers. In Eq. (1) the refractive
index change induced by the electronic Kerr effect depends
on the square of the electric fields of both the pump and
the probe light (the factor 2 for Epu will become clear at
Eq. 3). The electric fields in the instantaneous (Kerr) part
of Eq. (1) can be written in terms of cycle-averaged intensity
using the relation I� � jEj2n0c ∕ 2π. In general, when describ-
ing the intensity-dependent refractive index, the effect of the
probe is neglected due to its smaller intensity compared to the
pump [28]. However, this is not necessarily the case for cav-
ities due to the resonant field enhancement inside the cavity,
which appears to be the case in our experiment. In general the
cavity enhancement is given by I�cav ∕ I�pr � Q ∕ 2π

����
R

p
, where Q

is the quality factor of the cavity and R the reflectivity of the
cavity mirrors [36]. The probe-pulse energy in our experi-
ments is around I�pr � 0.18� 0.02 pJ ∕ μm2 before entering
the cavity. Our cavity with Q � 390 enhances the probe field
by Q ∕ 2π

���������
0.98

p
� 63 times to I�cav � 11.3� 0.02 pJ ∕ μm2 so

that it becomes nonnegligible compared to the typical
pump-pulse energy (I�pu ∼ 102 pJ ∕ μm2) in the cavity. The reso-
nant enhancement of the probe pulses by the cavity becomes
even more important for high-quality-factor cavities [16,37,38],
which might even bring the probe intensity beyond the level of
the pump intensity. As a result, if the effect of probe light is

neglected [see Eq. (1)], the usual pump intensity-dependent
refractive index change will be incorrect especially for
high-quality-factor cavities.

In order to calculate the intensity-dependent refractive in-
dex for the general nondegenerate pump–probe case, we start
by writing the total optical field as ~E�t� � Ecav�ωpr�e−iωprt �
Epu�ωpu�e−iωput � c:c: The general form of the total polariza-
tion of a material is described up to the third order by

PTot�ω� � ϵ0χ
�1� ~E�ω� � ϵ0χ

�2� ~E2�ω� � ϵ0χ
�3� ~E3�ω�: �2�

Because of the centrosymmetry of the GaAs χ�2� � 0, the total
polarization of the material reduces to PTot�ω� � ϵ0χ

�1� ~E�ω� �
ϵ0χ

�3� ~E3�ω� [39]. Taking the third power of the total optical
field for nondegenerate pump–probe light and inserting it into
the total polarization leads to

PTot�ωpr� � ϵ0χ
�1�Ecave−iωprt � 3ϵ0χ�3�E3

cave−i�ωpr�ωpr−ωpr�t

� 6ϵ0χ�3�EcavE2
pue−i�ωpu−ωpu�ωpr�t; (3)

which is the nonlinear polarization that influences the propa-
gation of a beam of frequency ωpr. The twofold degeneracy
factor in front of jEpuj2 in Eq. (1) is due to the twofold coeffi-
cient of the last term in Eq. (3) (see Appendix A for deriva-
tion). With this correction our model takes the cavity field
enhancement into account and gives the appropriate solution
for the intensity-dependent refractive index for comparable
intensities of nondegenerate pump–probe light. Having ex-
plained the Kerr term of Eq. (1), we calculate the free-carrier
term of Eq. (1) by calculating the free-carrier densities as
follows:

N �2�
eh � R�2�

ngNatmτint �
Natmτint8π3jμmgμnmj2

ℏ2n2
0c

2

2
4I2cavρf �ωng � 2ωpr�
z��������������}|��������������{3 in Fig: 2�b�

� IcavIpuωprωpuρf �ωng � ωpr �ωpu�
�

1

ω2
pr
� 2

ωprωpu
� 1

ω2
pu

�z�������������������������������������������������������}|�������������������������������������������������������{2 in Fig: 2�b� 3
5; (4)

N �3�
eh � R�3�

lg Natmτint �
Natmτint16π4jμmgμnmμlnj2

ℏ3n3
0c

3

2
4I3puρf �ωlg � 3ωpu�

4ωpu

z�������������}|�������������{1 in Fig: 2�c�

� I3cavρf �ωlg � 3ωpr�
4ωpr

z��������������}|��������������{4 in Fig: 2�c�

� IcavI2puωprω
2
puρf �ωlg � ωpr � 2ωpu�

�
1

4ω4
pu

� 1

ω2
pu�ωpr � ωpu�2

� 1

ω2
pr�ωpr � ωpu�2

z�������������������������������������������������������������������������������}|�������������������������������������������������������������������������������{2 in Fig: 2�c�

� 1

ωprω
2
pu�ωpr � ωpu�

� 1

ω3
pu�ωpr � ωpu�

� 2

ωprωpu�ωpr � ωpu�2
�z�����������������������������������������������������������}|�����������������������������������������������������������{2 in Fig: 2�c�

� I2cavIpuω2
prωpuρf �ωlg � 2ωpr � ωpu�

�
1

4ω4
pr
� 1

ω2
pu�ωpr � ωpu�2

� 1
ω2
pr�ωpr � ωpu�2

z�������������������������������������������������������������������������������}|�������������������������������������������������������������������������������{3 in Fig: 2�c�

� 1
ω2
prωpu�ωpr � ωpu�

� 1
ω3
pr�ωpr � ωpu�

� 2
ωprωpu�ωpr � ωpu�2

�z�����������������������������������������������������������}|�����������������������������������������������������������{3 in Fig: 2�c� 3
5: (5)

The two- and three-photon free-carrier densities [N �2�
eh and

N �3�
eh ] in Eqs. (4) and (5) are calculated by multiplying the

excitation rate Reh with the number of atoms Natm in the unit
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volume and the interaction time τint (see Appendices B and C
for derivations of general case). The relatively slow response
time of the free carriers and the accumulation nature of the
free-carrier excitation will integrate in time, and this will mask
the ultrafast dynamics. Therefore, the intensities in Eqs. (4)
and (5) are defined as I � R jEj2n0c ∕ 2πdt, which differs from
the instantaneous intensity term (I�) in the Kerr term of
Eq. (1). The limits of the time integral are given by the duration
time of the excitation process, which is much longer than the
excitation time of the carriers. The pump interaction time is
given by the pulse duration τP , whereas the probe interaction
time is given by τcav due to the cavity, which is in resonance
with the probe light only. In Eqs. (4) and (5), ρf �ωng� and
ρf �ωlg� are the density of final states and μmg, μnm, μln are
the dipole transition moments associated with the resonance
schemes depicted in Figs. 2(b) and 2(c). The parameters used
in our model are listed in Table 1.

We have derived the two-photon absorption rate R�2�
ng using

the perturbation solution to the Schrödinger’s equation for
nondegenerate applied optical fields; see Appendix B. We
calculate the two-photon absorption cross section σ�2�ng by
taking into account that the energy of two pump photons is
less than the electronic bandgap energy of GaAs
[2 × Epu�0.51 eV� < Egap�1.43 eV�, 1 in Fig. 2(b)] so that we
can safely neglect the excitation of free carriers by two-pump
photons. We consider absorption of two probe photons [3 in
Fig. 2(b)] and the nondegenerate two-photon absorption [2 in
Fig. 2(b))] when we calculate the two-photon absorption cross
section. Under the circumstances listed in Table 1, we calcu-
late the two-photon absorption cross section to be equal to
σ�2�ng �ωpr;ωpu� � 1.14 × 10−50 cm4 s ∕ photons2. The two-photon
absorption coefficient [β�2�] can be calculated from β�2� �
4σ�2�ngNatm ∕ℏω [41]. We find the two-photon absorption coeffi-
cient to be β�2� � 0.013 cm ∕MW. The values for σ�2�ng and β�2�

agree with the earlier estimated and measured values
[41,42]. In our experiment the sum of the energies of the pump
and the probe photons are chosen to suppress two-photon
absorption �Epr�0.95 eV� � Epu�0.51 eV�≃ Egap�1.43 eV��,
which affects the two-photon absorption cross section. We
adjust the two-photon cross section to σ�2��ng �ωpr;ωpu� � 8.6 ×
10−52 cm4 s ∕ photons2 to obtain a good match of our model
with our experimental data. With the value we use for σ�2��ng ,
we observe that the refractive index increases as in our

experiment with the applied pump-pulse energy. We use
the value that we calculate for σ�2��ng �ωpr;ωpu� in our model
(solid curve in Fig. 6) to calculate the two-photon generated
free-carrier density. As in the experiments, we observe that
the linear increase of the index change due to the electronic
Kerr effect competes with the excited free carriers whose
density increases linearly with pump-pulse energy (since
Epu < 1

2Egap). The nondegenerate two-photon coefficient
can also be estimated for GaAs using the model described
by Hutchings and van Stryland [30]. However, we calculate
the nondegenerate two-photon absorption coefficient using
our model since it was a necessary step to calculate the non-
degenerate three-photon absorption coefficient.

We have derived the density of free carriers [Eq. (5)] gener-
ated by three-photon absorption N �3�

eh . We calculate the three-
photon absorption rate R�3�

lg using the perturbation solution
to the Schrödinger’s equation for nondegenerate optical fields
(see Appendix C). The three-photon absorption cross
section σ�3�lg is calculated by considering all excitation schemes
shown in Fig. 2(c), since all the permutations of pump and
probe exceed the bandgap of GaAs. We find the three-photon
absorption cross section to be σ�3�lg �ωpr;ωpu� � 3.9×
10−84 cm6 s2 ∕ photons3. The three-photon absorption coeffi-
cient [γ�3�] can then be calculated from γ�3� � 6σ�3�lg Natm ∕ �ℏω�2
[41]. We find the three-photon absorption coefficient to be
γ�3� � 0.45 × 10−4 cm3 ∕GW2. The values we calculated for
σ�3�lg and γ�3� agree within one [41,42] order of magnitude with
the reported values.We consider this a very good agreement in
the view of the difference in frequencies and material and the
difference due to degenerate and nondegenerate conditions.
The value that we experimentally determine for γ�3� is in good
agreement with the measured values [43]. We set the three-
photon absorption cross section to σ�3��lg �ωpr;ωpu� �
4.7 × 10−83 cm6 s2 ∕ photons3 to obtain a good match of our
model with our experimental data. With the value we use
for σ�3��lg �ωpr;ωpu�, the refractive index change becomes non-
linear with the applied pump-pulse energy, and the refractive
index starts to decrease within the energy regime shown in
Fig. 6. Themodel also clearly shows the desired linear increase
of the index in the Kerr regime (at low pulse energies), and the
appearance of the nonlinear decrease of the free-carrier index
that starts to compete at higher pulse energies. We attribute
the difference between the model and the experiment at low
pump-pulse energies to our choice of not using χ�3� as a free
parameter while we consider the free-carrier excitation even
at low pump-pulse energies in our model. In our analysis we
do not calculate the density of states for each permutation
of pump–probe frequencies, although our model can describe
the frequency dependency. Instead we use the approximation
that ρf �ω� ≈ �2πΓn;l�−1 [28] whereΓn;l (see Table 1) is the width
of level n, l. We list all the coefficients that we calculate using
ourmodel and the coefficients thatwe deduce from our experi-
ment in Table 2. We conclude here that there is an optimum
power for instantaneous Kerr switching of a cavity, namely
at the onset of the carrier effects this value optimizes.

5. QUALITY-FACTOR-DEPENDENT
ULTIMATE-FAST SWITCHING
As opposed to the derivation of the three-photon absorption
coefficient [σ�3�lg ] that restricts itself to the simplified case of
degenerate optical fields [28, 31], we have here derived the

Table 1. Parameters Used in Our Model

Parameter Value Unit Source

Natm 4.42 × 1022 atoms ∕ cm3 [40]
μ2 6.25 × 10−43 J cm3 [28]
Γn;l 6.28 × 1013 rad ∕ s [28]
τint 150.0 × 10−15 s a

ωpr 7805.79 cm−1 a

1.47 × 1015 Hz a

I�pr 0.18 pJ ∕ μm2 a

0.2 GW ∕ cm2 a

I�cav 11.3 pJ ∕ μm2 a

12.0 GW ∕ cm2 a

ωpu 4166.67 cm−1 a

7.85 × 1015 Hz a

I�pu 1.00 × 102 pJ ∕ μm2 a

93.7 GW ∕ cm2 a

aSet by the experimental conditions.
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two- and three-photon absorption cross sections for the gen-
eral case of nondegenerate optical fields. Since only the two-
photon absorption coefficient has been reported previously
for the nondegenerate case [30], we chose to derive a model
for nondegenerate case that can predict both two- and three-
photon absorption cross sections. Our approach holds the ad-
ditional advantage of calculating the free-carrier density as a
function of both pump and probe intensities independently.
This feature allows us to extend refractive index changes
for switched cavities with different quality factors Q. We as-
sumed cavities with resonance ωres � 7812 cm−1 pumped at
ωpu � 4165 cm−1 as in our experiment. The pump-pulse dura-
tion is taken as τP � 140� 10 fs, whereas the probe-pulse
duration is set by τcav since only the probe pulse is in reso-
nance with the cavity and τcav is inversely proportional to
the quality factor Q. Figure 7 shows that the observed refrac-
tive index increase from the Kerr effect can be revealed with a
low quality factor (Q � 300) cavity up to 200 pJ ∕ μm2 pump-
pulse energy, similar to our experiment. For increasing quality
factors, there is only a small increase in the refractive index
due to the Kerr effect before the free carriers decrease the
index (Q � 600) or even only a decreasing refractive index
with increasing pump-pulse energy (Q � 1000). The less ap-
parent Kerr effect with the increasing quality factor is caused
by the decreasing temporal overlap of pump and probe as the

probe pulse becomes much longer than the pump pulse
(τcav > τP) [10]. In fact, for high-quality-factor cavities during
a longer fraction of the probe pulse, there is no pump light; as
a result, no Kerr switching occurs for this time duration. As a
consequence, high-quality-factor cavities invite Kerr switching
with long pump pulses, but this defies the purpose of ultrafast
optical switching. Interestingly, however, there is (Fig. 7) also
already Kerr-induced refractive index increase for zero pump-
pulse energy. This effect is the result of the cavity-enhanced
probe light that already induces a Kerr shift. With increasing
quality factor, the shift increases because of the increased
probe enhancement in the cavity. However, due to the com-
peting free carriers generated via degenerate two- and three-
probe photon absorption, the Kerr-induced positive shift does
not scale linearly with the quality factor. We therefore con-
clude that cavities with shorter storage times can reduce
the free-carrier excitation that enables instantaneous switch-
ing of semiconductor cavities at the telecom range.

6. CONCLUSION
We demonstrate switching of a semiconductor microcavity
within 300 fs at telecom wavelengths using the electronic Kerr
effect as a function of pump-pulse energy. We manage to mea-
sure the nondegenerate third-order susceptibility [χ�3�] of
GaAs using pump–probe experiment. We show that the refrac-
tive index change induced by the electronic Kerr effect can be
increased to a certain extent that is limited by the increasing
density of excited free carriers. We show that the judicious
tuning of the frequency of the driving fields relative to the
bandgap of the semiconductor decreases the number of free
carriers and thereby increases the positive shift of the reso-
nance frequency resulting from the electronic Kerr effect.
Our model quantitatively describes the frequency and the in-
tensity dependence of nondegenerate switching with pump–
probe experiment. The realization and understanding of the
competition between the electronic Kerr effect and the free
carriers reveals the set of parameters using which the instan-
taneous electronic Kerr effect can be utilized as the ultimate-
fast way of all-optical switching. The refractive index change
(0.1%) induced by the electronic Kerr effect will result in a
larger resonance frequency shift in comparison to the cavity
linewidth with high-Q cavities. However, we find that, due to
the larger field enhancements in high-Q cavities, the Kerr ef-
fect will be hindered by the free carriers. On the other hand, if
the incident probe-pulse energy is further reduced, then this
competition in high-Q cavities can be directed in favor of the
electronic Kerr effect. Reducing the required pulse energy of
the pump pulses will be achieved if the pump pulses are also
resonantly enhanced by the cavity. Moreover, we note that the
pump photons are not absorbed in the electronic Kerr effect;
hence the pump pulses do not heat up the sample, and thus
they can be recycled to switch the cavity resonance again.

APPENDIX A: INTENSITY-DEPENDENT
REFRACTIVE INDEX
In nonlinear optics the intensity-dependent refractive index
for pump–probe experiments is generally described under
the assumption of weak probe field [28]. In experiments invol-
ving cavities, however, as described in this paper, pump
and probe fields may be of the same order due to the reso-
nant enhancement of the probe field. In order to reveal the
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Fig. 7. (Color online) Refractive index change versus pump-pulse en-
ergy calculated for three different quality factors. The positive index
change due to the electronic Kerr effect is more pronounced with low
quality factor cavities with fast dynamics. We assumed cavities with
resonance ωres � 7812 cm−1 pumped at ωpu � 4165 cm−1 as in our ex-
periment. The pump-pulse duration is taken as τP � 140� 10 fs,
whereas the probe-pulse duration is set by τcav.

Table 2. Coefficients Calculated and Determined
from Measurementsa

Parameter Measurement Calculated Unit

χ�3� 6.72 × 10−20 m2 ∕V2

0.48 × 10−11 esu
σ�2�ng 8.59 × 10−52 1.14 × 10−50 cm4 s ∕ photon2

N �2�
eh 3.78 × 1017 5.04 × 1018 1 ∕ cm3

β�2� 0.10 × 10−2 0.13 × 10−1 cm ∕MW
σ�3�lg 4.71 × 10−83 3.93 × 10−84 cm6 s2 ∕ photon3

N �3�
eh 5.92 × 1016 4.93 × 1015 1 ∕ cm3

γ�3� 0.53 × 10−3 0.45 × 10−4 cm3 ∕GW2

aThe values are calculated and measured for the experimental parameters
listed in Table 1.
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consequences of this, we derive in this appendix the intensity-
dependent refractive index involving nondegenerate pump
and probe fields.

The nonlinear refractive index can be described for large
interaction times [28]:

n�ωpr� � n0�ωpr� � n2�ωpr:ωpr;ωpu�h ~E2i; (A1)

where n0 is the weak field refractive index, n2 the second-
order index of refraction, and h ~Ei the time average of the elec-
tric field. The arguments of n2 express that the result at fre-
quency ωpr depends on both ωpr and ωpu, as we will see below.
In order to calculate the intensity-dependent refractive index
for nondegenerate pump–probe light, we start with an optical
field of the form

~E�t� � Epr�ωpr�e−iωprt � Epu�ωpu�e−iωput � c:c:; (A2)

so that

h ~E2�ωpr;ωpu�i � 2Epr�ωpr�E�
pr�ωpr� � 2Epu�ωpu�E�

pu�ωpu�
� 2�jEprj2 � jEpuj2�: (A3)

By inserting Eq. (A3) into Eq. (A1), we rewrite the nonlinear
index in terms of the pump and probe fields:

n�ωpr� � n0�ωpr� � 2n2�ωpr:ωpr;ωpu��jEprj2 � jEpuj2�: (A4)

The general form of the total polarization of a material is
described up to the third order by [28]

PTot�ω� � ϵ0χ
�1� ~E�ω� � ϵ0χ

�2� ~E2�ω� � ϵ0χ
�3� ~E3�ω�: �A5�

Because of the centrosymmetry of GaAs, the total polarization
reduces to PTot�ω� � ϵ0χ

�1� ~E�ω� � ϵ0χ
�3� ~E3�ω� [39]. Taking the

total optical field to the third power [Eq. (A2)] and inserting it
into the total polarization leads to

PTot�ωpr� � ϵ0χ
�1�Epre−iωprt � 3ϵ0χ�3�E3

pre−i�ωpr�ωpr−ωpr�t

� 6ϵ0χ�3�EprE2
pue−i�ωpu−ωpu�ωpr�t

� ϵ0Epre−iωprt�χ�1� � 3χ�3�E2
pr � 6χ�3�E2

pu�|�����������������������{z�����������������������}
χeff

; (A6)

which is the nonlinear polarization that influences the propa-
gation of a beam of frequency ωpr. We introduce an effective
nonlinear susceptibility in Eq. (A6) given by

χeff � χ�1� � 3χ�3�jEprj2 � 6χ�3�jEpuj2: (A7)

We note that it is generally true that [28]

n2�ωpr� � 1� 4πχeff ; (A8)

and by inserting Eqs. (A4) and (A7) into Eq. (A8), we get

n0�ωpr�2 � 4n2�ωpr:ωpr;ωpu�n0�ωpr��jEprj2 � jEpuj2�
� 4n2�ωpr:ωpr;ωpu�2�jEprj2 � jEpuj2�2

� 1� 4πχ�1� � 12πχ�3�jEprj2 � 24πχ�3�jEpuj2: (A9)

Making the reasonable assumption that n2 ≪ n0 and by
equating the terms of the same order on each side of Eq. (A9),
we find the relation between the linear and nonlinear refrac-
tive indices and the relevant susceptibilities as follows:

n0�ωpr�2 � 1� 4πχ�1�; (A10)

n2�ωpr:ωpr;ωpu� �
3πχ�3�

n0�ωpr�
�jEprj2 � 2jEpuj2�
�jEprj2 � jEpuj2�

: (A11)

Inserting Eq. (A11) into Eq. (A1) results in the nonlinear index

n�ωpr� � n0�ωpr� �
6πχ�3�

n0�ωpr�
�jEprj2 � 2jEpuj2�: (A12)

Equation (A12) shows that the refractive index change in-
duced by the electronic Kerr effect depends on the square
of the electric fields of both the pump and the probe light.
For low values of Epr, we get the usual expression for the two
degenerate beam case given in [28]. In the text we use Ecav

instead of Epr since only the probe pulse is in resonance with
the cavity, which modifies the probe-pulse duration and the
intensity of the probe pulse. However, in the appendix the
equations are derived for a general case where the probe pulse
is nonresonant.

APPENDIX B: TWO-PHOTON ABSORPTION
CROSS SECTION
Following the derivation of refractive index change induced
by the electronic Kerr effect, we derive the two-photon ab-
sorption rate R�2�

eh using a perturbation approach to solve
Schrödinger’s equation for nondegenerate applied optical
fields. We start with a two-level system to calculate the
two-photon absorption rate, and later we introduce density
of states in order to mimic a semiconductor. In our derivation
we choose to explicitly write out all terms instead of using the
permutation operator for the probability amplitude as in [28].
In this way we can calculate the absorption rate as a function
of both pump and probe intensities as an extension beyond
the textbook [28].

We start by writing the time-dependent Schrödinger equa-
tion in the presence of a time-dependent interaction potential
~V�t�. We then use the standard perturbation analysis as de-
scribed in [28] to get

da�N�
m

dt
� �iℏ�−1

X
l

aN−1
l

~Vlme−iωlmt; (B1)

where a�N�
m is the probability amplitude of state m with N in-

teraction order and ~Vlm are the matrix elements of interaction
Hamiltonian V̂ . We first calculate the linear absorption term;
hence, we set N � 1. We assume that, in the absence of any
applied electric field, the atoms are in the ground state g (see
Fig. 2 for the energy levels) so that a0g�t� � 1 and a0m�t� � 0 for
m ≠ g at all times t [28]. We then write ~Vmg as
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~Vmg � −μmg�Epr�ωpr�e−iωprt � Epu�ωpu�e−iωput

� E�
pr�ωpr�eiωprt � E�

pu�ωpu�eiωput�; (B2)

where μmg is the transition dipole moment between states m
and g. Inserting Eq. (B2) into Eq. (B1) gives

da�1�m

dt
� −�iℏ�−1μmg�Epr�ωpr�ei�ωmg−ωpr�t � Epu�ωpu�ei�ωmg−ωpu�t

� E�
pr�ωpr�ei�ωpr�ωmg�t � E�

pu�ωpu�ei�ωpu�ωmg�t�: (B3)

We drop the terms with ωpr � ωmg and ωpu � ωmg since they
describe the process of stimulated emission. The neglect of
the second terms is known as the rotating wave approxima-
tion. To get the probability amplitude for linear absorption, we
integrate Eq. (B3):

a�1�m �t� � −�iℏ�−1μmg

Z
t

0
dt0�Epr�ωpr�ei�ωmg−ωpr�t0

� Epu�ωpu�ei�ωmg−ωpu�t0 �

� μmgEpr

ℏ�ωmg − ωpr�
�ei�ωmg−ωpr�t − 1�

� μmgEpu

ℏ�ωmg − ωpu�
�ei�ωmg−ωpu�t − 1�: (B4)

In order to get the probability amplitude a2n�t� for two-
photon absorption [see Fig. 2(b) for the energy levels] we de-
scribe ~Vnm as

~Vnm � −μnm�Epr�ωpr�e−iωprt � Epu�ωpu�e−iωput

� E�
pr�ωpr�eiωprt � E�

pu�ωpu�eiωput�. (B5)

We use Eqs. (B4) and (B5) in Eq. (B1) to get

da�2�n

dt
� −�iℏ�−1

X
m

a�1�m × ~Vnme−iωmnt: (B6)

In Eq. (B6) we again use the rotating wave approximation and
we omit the complex terms that describe the stimulated emis-
sion as has been shown in Eq. (B3). Furthermore, in Eq. (B6)
we assume that single level m dominates the sum so that the
sum disappears. Thus, we get

da�2�n

dt
� −

μmgμnm
iℏ2

�
E2
pr

�ωmg − ωpr�
�ei�ωmg�ωnm−2ωpr�t − ei�ωnm−ωpr�t�

� EprEpu

�ωmg − ωpu�
�ei�ωmg�ωnm−ωpr−ωpu�t − ei�ωnm−ωpr�t�

� EprEpu

�ωmg − ωpr�
�ei�ωmg�ωnm−ωpr−ωpu�t − ei�ωnm−ωpu�t�

� E2
pu

�ωmg − ωpu�
�ei�ωmg�ωnm−2ωpu�t − ei�ωnm−ωpu�t�

�
: (B7)

In Eq. (B7) we use the identity �ωng � ωnm � ωmg� and we as-
sume that the one-photon transition is highly nonresonant so
that �ωmg − ωpr ≃ ωpr� and �ωmg − ωpu ≃ ωpu�. The terms with
�ωnm − ωpr� and �ωnm − ωpu� give the transient response of the
process so that they can be dropped in the consideration of

Eq. (B7) [28]. Finally, we integrate Eq. (B7) up to time t and
then multiply by t ∕ t to make the denominators look similar to
the exponents:

a�2�n �t� � tμmgμnm
ℏ2

"
E2
pr�ei�ωng−2ωpr�t − 1�
ωpr�ωng − 2ωpr�t

� E2
pu�ei�ωng−2ωpu�t − 1�
ωpu�ωng − 2ωpu�t

�
�
EprEpu

ωpu
� EprEpu

ωpr

�
ei�ωng−ωpr−ωpu�t − 1
�ωng − ωpr − ωpu�t

#
: (B8)

We set �ωng − 2ωpr�t � x, �ωng − ωpr − ωpu�t � y,

�ωng − 2ωpu�t � z, E2
pr ∕ωpr � A, EprEpu

ωpu
� EprEpu

ωpr
� B, and

E2
pu ∕ωpu � C so that Eq. (B8) simplifies to

a�2�n �t� � tμmgμnm
ℏ2

�
A�eix − 1�

x
� B�eiy − 1�

y
� C�eiz − 1�

z

�
:

(B9)

Then the probability is

p�2�n �t��ja�2�n �t�j2� t2jμmgμnmj2
ℏ4

×

"
A2�1−eix−e−ix�1�

x2
�B2�1−eiy−e−iy�1�

y2

�C2�1−eiz−e−iz�1�
z2

�AB�ei�x−y�−eix−e−iy�1�
xy

�AB�e−i�x−y�−e−ix−eiy�1�
xy

�AC�ei�x−z�−eix−e−iz�1�
xz

�AC�e−i�x−z�−e−ix−eiz�1�
xz

�BC�ei�y−z�−eiy−e−iz�1�
yz

�BC�e−i�y−z�−e−iy−eiz�1�
yz

#
: (B10)

In the following we analyze the terms inside the square brack-
ets of Eq. (B10) for long interaction times. First we introduce
functions f �t� and g�t� given as

f �t� � t2�2 − eix − e−ix�
x2

� t22�1 − cos x�
x2

; (B11)

g�t� � t2
�
ei�x−y� − eix − e−iy � 1

xy
� e−i�x−y� − e−ix − eiy � 1

xy

�

� t2
�
2� 2 cos�x − y� − 2 cos x − 2 cos y

xy

�
: (B12)

Figures 8(a) and 8(b) show the approximation of the functions
f �t� and g�t� as Dirac delta functions for long interaction
times, respectively. The peak value of f �t� is t2 when x → 0;
that is, ωng − 2ωpr → 0. The width of the central peak is of the
order of 2π ∕ t. Thus, the area under the central peak is of the
order of 2πt. The function f �t� can be expressed in terms of a
Dirac delta function for large t as [28]

lim
t→∞

f �t� � 2πtδ�ωng − 2ωpr�: (B13)

Similarly we can also write g�t� in terms of Dirac delta func-
tions for large t as
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lim
t→∞

g�t� � 4πtδ�ωng − 2ωpr�δ�ωng − ωpr − ωpu�: (B14)

We can see that (Fig. 8) limt→∞ g�t� � 2 if ωng − 2ωpr � 0 and
ωng − ωpr − ωpu � 0 at the same time. Since ωpr ≠ ωpu, then
g�t� � 0 for nondegenerate light sources. Later, we consider
that the presence of the delta function is somewhat unphysi-
cal. Instead we use the fact that the final state n is spread
into a density of final states ρf �ωng�, which is normalized such
that [28]

Z
∞

0
ρf �ωng�dωng � 1; (B15)

and thusZ
∞

0
ρf �ωng�2πδ�ωng − 2ωpr�dωng � ρf �ωng � 2ωpr�: (B16)

Considering the fact that the first three terms inside square
brackets in Eq. (B10) have the same form as f �t�, we can apply
the same procedure [described from Eqs. (B11) to (B16)] for
these three terms. Moreover, because of the fact that g�t� � 0
for nondegenerate sources, the last six terms inside the square
brackets in Eq. (B10) become also zero since they have the
form of g�t�. As a result, the probability to be in the upper level
n simplifies to

p�2�n �t� � 2πtjμmgμnmj2
ℏ4

× �A2ρf �ωng � 2ωpr� � B2ρf �ωng � ωpr � ωpu�
� C2ρf �ωng � 2ωpu��: (B17)

Since the probability for an atom to be in the upper state
seems to increase linearly with time, we can define a
transition rate as [28]

R�2�
ng � p�2�n �t�

t
: (B18)

The two-photon cross section can then be calculated via

σ�2�ng � R�2�
ng

I2
; (B19)

where I is the intensity of the incident field in units of
photons ∕ cm2s. We can now calculate the density of free car-
riers from the transition rate using

N �2�
eh � R�2�

ngNatmτint; (B20)

whereNatm is the number of interacting atoms per unit volume
and τint the interaction time. Then we use the explicit forms of
A, B, and C, and we write the density of free carriers gener-
ated by two-photon absorption:

N �2�
eh �

Natmτint8π3jμmgμnmj2
ℏ2n2

0c
2

2
4I2puρf �ωng�2ωpu�
z�������������}|�������������{1 inFig:2�b�

�I2prρf �ωng�2ωpr�
z������������}|������������{3 inFig:2�b�

�IprIpuωprωpuρf �ωng�ωpr�ωpu�
�

1

ω2
pr
� 2
ωprωpu

� 1

ω2
pu

�z���������������������������������������������������}|���������������������������������������������������{2 inFig:2�b� 3
5:

(B21)

Using Eq. (B21), we can calculate the density of free carriers
generated via two-photon absorption as function of pump and
probe intensities and interaction times independently. In our
calculations we assume that the laser frequency is tuned to the
peak of the two-photon resonance, so that ρf �ω� ≈ �2πΓn�−1
[28], where Γn is the width of level n (see Table 1).
Equation (B21) is calculated for the general case of two-
photon absorption where all permutations of pump and probe
exceed the bandgap energy. One has to consider to leave out
the nonresonant terms (that do not excite free carriers) to cal-
culate the specific density of free carriers generated via two-
photon absorption.

APPENDIX C: THREE-PHOTON
ABSORPTION CROSS SECTION
In order to calculate the probability amplitude a3n�t� for three-
photon absorption [see Fig. 2(c) for the levels], we follow the
same steps as in Appendix B but modified for the three-photon
absorption process. Here we describe ~Vln as

~Vln � −μln�Epr�ωpr�e−iωprt � Epu�ωpu�e−iωput

� E�
pr�ωpr�eiωprt � E�

pu�ωpu�eiωput�: (C1)

We use Eqs. (B8) and (C1) in Eq. (B1) to get a�3�l �t�:

da�3�l

dt
� −�iℏ�−1

X
mn

a�2�n × ~Vlne−iωlnt: (C2)
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Fig. 8. (Color online) (a) Function f �t� versus x in Eq. (B11), which
can be approximated as a Dirac delta function; (b) function g�t� in
Eq. (B12), which can be approximated as two-dimensional Dirac delta
function. The absorption probability is proportional to the functions
f �t� and g�t�.
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Afterwe carry out themultiplications inEq. (C2),weuse �ωlg �
ωln � ωnm � ωmg� for simplification, and we drop the terms
with �ωln − ωpr� and �ωln − ωpu� since they give the transient re-
sponse of the process, and we also drop the terms describing
the stimulated emission [28]. Then we integrate Eq. (C2) (see
AppendixB for the similar steps).We assume that both the one-
photon and two-photon transitions are highly nonresonant so
that �ωmg − ωpr ≃ ωpr�, �ωmg − ωpu ≃ ωpu�, �ωng − 2ωpr ≃ 2ωpr�,
�ωng − 2ωpu ≃ 2ωpu�, and �ωng − ωpr − ωpu ≃ ωpr � ωpu�. Final-
ly, we get

a�3�l �t� � tμlnμnmμmg

ℏ3

"
E3
pr

2ω2
pr

�ei�ωlg−3ωpr�t − 1�
�ωlg − 3ωpr�t

� E2
prEpu

2ω2
pr

�ei�ωlg−2ωpr−ωpu�t − 1�
�ωlg − 2ωpr − ωpu�t

� E2
prEpu

ωpu�ωpr � ωpu�
�ei�ωlg−2ωpr−ωpu�t − 1�
�ωlg − 2ωpr − ωpu�t

� EprE2
pu

ωpu�ωpr � ωpu�
�ei�ωlg−ωpr−2ωpu�t − 1�
�ωlg − ωpr − 2ωpu�t

� E2
prEpu

ωpr�ωpr � ωpu�
�ei�ωlg−2ωpr−ωpu�t − 1�
�ωlg − 2ωpr − ωpu�t

� EprE2
pu

ωpr�ωpr � ωpu�
�ei�ωlg−ωpr−2ωpu�t − 1�
�ωlg − ωpr − 2ωpu�t

� E2
puEpr

2ω2
pu

�ei�ωlg−2ωpu−ωpr�t − 1�
�ωlg − 2ωpu − ωpr�t

� E3
pu

2ω2
pu

�ei�ωlg−3ωpu�t − 1�
�ωlg − 3ωpu�t

#
: (C3)

In Eq. (C3), we set

x� �ωlg − 3ωpr�t; y� �ωlg − 2ωpr −ωpu�t;
z� �ωlg − 2ωpu −ωpr�t; w � �ωlg − 3ωpu�t;

A� E3
pr

2ω2
pr
; B� E2

prEpu

2ω2
pr

� E2
prEpu

ωpu�ωpr �ωpu�
� E2

prEpu

ωpr�ωpr �ωpu�
;

C � E2
puEpr

2ω2
pu

� E2
puEpr

ωpu�ωpr �ωpu�
� E2

puEpr

ωpr�ωpr �ωpu�
;

D � E3
pu

2ω2
pu
; (C4)

then Eq. (C3) simplifies to

a�3�l �t� � tμmgμnmμln
ℏ3

�
A�eix − 1�

x
� B�eiy − 1�

y

� C�eiz − 1�
z

� D�eiw − 1�
w

�
: (C5)

Then the probability is

p�3�l �t��ja�3�l �t�j2�t2jμmgμnmμlnj2
ℏ6

×
�
A2�1−eix−e−ix�1�

x2
�B2�1−eiy−e−iy�1�

y2

�C2�1−eiz−e−iz�1�
z2

�D2�1−eiw−e−iw�1�
w2

�AB�ei�x−y�−eix−e−iy�1�
xy

�AB�e−i�x−y�−e−ix−eiy�1�
xy

�AC�ei�x−z�−eix−e−iz�1�
xz

�AC�e−i�x−z�−e−ix−eiz�1�
xz

�AD�ei�x−w�−eix−e−iw�1�
xw

�AD�e−i�x−w�−e−ix−eiw�1�
xw

�BC�ei�y−z�−eiy−e−iz�1�
yz

�BC�e−i�y−z�−e−iy−eiz�1�
yz

�BD�ei�y−w�−eiy−e−iw�1�
yw

�BD�e−i�y−w�−e−iy−eiw�1�
yw

�CD�ei�z−w�−eiz−e−iw�1�
zw

�CD�e−i�z−w�−e−iz−eiw�1�
zw

�
:

(C6)

If we analyze the terms inside the square brackets in Eq. (C6)
for large interaction times, following the same steps used in
Appendix B [from Eq. (B11) to Eq. (B16)], the probability to
be in upper level l simplifies to

p�3�l �t� � 2πtjμmgμnmμlnj2
ℏ6 �A2ρf �ωlg � 3ωpr�

� B2ρf �ωlg � 2ωpr � ωpu�
� C2ρf �ωlg � ωpr � 2ωpu� � D2ρf �ωlg � 3ωpu��: (C7)

We can define a transition rate as [28]

R�3�
lg � p�3�l �t�

t
: (C8)

The three-photon cross section can then be calculated via

σ�3�lg � R�3�
lg

I3
; (C9)

where I is the intensity of the incident field in the units of
photons ∕ cm2s. We can now calculate the density of free car-
riers from the transition rate using

N �3�
eh � R�3�

lg Natmτint; (C10)

where Natm is the number of interacting atoms in the unit vo-
lume and τint the interaction time. Then we write the density of
free carriers generated by three-photon absorption by simply
inserting the functions in Eq. (C4) into Eq. (C7):
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N �3�
eh � R�3�

lg Natmτint �
Natmτint16π4jμmgμnmμlnj2
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Using Eq. (C11), we are able to explicitly calculate the density
of free carriers generated via three-photon absorption as a
function of pump and probe intensities and interaction times
independently. In our calculationswe assume that the laser fre-
quency is tuned to the peak of the two-photon resonance, so
that ρf �ω� ≈ �2πΓl�−1 [28], where Γl (see Table 1) is the width
of level l. Equation (C11) is calculated for the general case of
three-photon absorption where all the permutations of pump
and probe exceeds the bandgap energy. One has to consider
to leave out the nonresonant terms to calculate the specific
density of free carriers generated via three-photon absorption.
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